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Many aspects of the evolutionary process of tumorigenesis that are
fundamental to cancer biology and targeted treatment have been
challenging to reveal, such as the divergence times and genetic
clonality of metastatic lineages. To address these challenges, we
performed tumor phylogenetics using molecular evolutionary mod-
els, reconstructed ancestral states of somatic mutations, and inferred
cancer chronograms to yield three conclusions. First, in contrast to a
linear model of cancer progression, metastases can originate from
divergent lineages within primary tumors. Evolved genetic changes
in cancer lineages likely affect only the proclivity toward metastasis.
Single genetic changes are unlikely to be necessary or sufficient for
metastasis. Second, metastatic lineages can arise early in tumor
development, sometimes long before diagnosis. The early genetic
divergence of some metastatic lineages directs attention toward
research on driver genes that are mutated early in cancer evolution.
Last, the temporal order of occurrence of driver mutations can be
inferred from phylogenetic analysis of cancer chronograms, guiding
development of targeted therapeutics effective against primary
tumors and metastases.
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It has long been understood that tumorigenesis is an evolu-
tionary process (1) associated with the accumulation of somatic

mutations (2). However, many aspects of that process that are
fundamental to cancer biology and targeted treatment have been
challenging to reveal, such as the divergence times and genetic
clonality of metastatic lineages (3, 4). Somatic mutations have
revealed tumor type-specific drivers by comparison of primary
tumor and normal tissues (5, 6), and studies examining the evo-
lutionary process of cancer across multiple sites have used a
handful of subjects to identify ubiquitous, shared, and private
mutations (1) and to reconstruct a number of tumor phylogenies
using parsimony or unweighted pair group methods with arith-
metic mean (1, 7) but have lacked the power to generalize about
the tumorigenic or metastatic process across cancer types (1).
Tumor phylogenetics, using a larger sample with explicit evo-

lutionary models, can be applied using molecular evolutionary
models to reconstruct ancestral states of somatic mutations and
infer cancer chronograms, revealing novel information about the
timing of gene mutations and their contributions to tumorigen-
esis and metastasis and addressing three fundamental aspects of
cancer biology. First, the topology of divergence of primary and
metastatic lineages can differentiate between a linear model of
cancer progression, in which all metastatic tumors are descended
from a single original primary cell such that all metastases are
more closely related to each other than they are to any tissue in
the primary tumor, and a branched model, in which metastases
can originate from divergent lineages within primary tumors.
Second, molecular evolutionary trees and chronograms can
quantify how early metastatic lineages arise in tumor develop-
ment, clarifying the role of mutations in facilitating metastasis.
Last, integration of temporal inferences across patients can

convey the order of occurrence of driver mutations, guiding
development of targeted therapeutics effective against primary
tumors and metastases.
Here, we perform tumor phylogenetics to address these ques-

tions. Although ascertaining variable degrees of tumor heteroge-
neity (1) by computational analyses of subclonality within primary
tumors has proven challenging (8), another approach to revealing
heterogeneity is analysis of the sequence divergence of major
clones extracted from distant sites. We replayed the “tape of
cancer” and mapped genetic mutations on the tree of cancer
evolution extending from normal tissue to primary tumor and
metastases. Analyzing new exome sequence data from primary
and metastatic sites, we applied maximum likelihood and
Bayesian approaches to reveal phylogenetic relationships and tumor
evolution chronology. We identified genetic mutations associated
with tumorigenesis that commonly precede the first genetic di-
vergence of all cancer lineages, also examining those that precede all
metastases. Furthermore, we quantified the temporal distributions
of the first genetic divergence of metastases from the primary tu-
mor and evaluated the temporal order of gene mutations in cancer.

Results and Discussion
We generated a unique dataset of sequenced normal, primary,
and matched metastatic tumor tissues from 40 subjects with 13
types of cancer, including 13 subjects with lung cancer and 7
subjects with pancreatic cancer. We sequenced exomes of nor-
mal, primary, and matched metastatic tumor tissues, including
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32 primary tumors and 139 sites of metastases, ranging from two to
seven metastases per subject (Fig. 1A, Fig. S1A, Dataset S1, and
SI Materials and Methods). Twenty-four of these primary tumors
were identified clinically without ambiguity whereas, in eight lung
cancer subjects, the primary tumor was identified with less certainty.
Exomes were captured from normal tissues and tumors of sufficient
purity and sequenced to an average of nearly 200× coverage per
targeted base, 95% of which were covered by more than 20 inde-
pendent reads (Fig. S1B and Dataset S2). After alignment to the
reference human genome, comparison of normal and all matched
tumor sequences identified 20–5,370 somatic mutations in each
subject. Variant calls were tested for a subset of somatic mutations
by Sanger sequencing and were 100% validated (Dataset S3).

Tumor Phylogenetics of Multiregion Tumors Revealed the Origins of
Metastatic Lineages from Divergent Lineages Within Primary Tumors.
We constructed 40 multiple sequence alignments, each alignment
including the somatic variants from all tumors within each subject
and their matched normal tissue sequence (Dataset S4). To deter-
mine the genetic relationship of these tumors, we applied parsimony-
based (9), maximum likelihood (10), and Bayesian inference (11)
to the multiple sequence alignment, estimating phylogenies of
the tumor samples within subjects (Fig. 1B and Fig. S2). We then

calibrated these phylogenies with tumor type-specific data on
tumor cell division times (12) and with the clinical timings of
diagnosis, biopsy, resection, and autopsy for each patient
(Datasets S5 and S6) to evaluate the evolutionary pattern and
tempo of the genetic divergence of primary and metastatic tumor
lineages (Fig. 1C and Fig. S3).
Rare lineage-specific events, such as new somatic mutations or

epigenetic marks, might trigger metastasis, a hypothesis that is a
component of linear models of progression (13). If such rare
lineage-specific events induce metastasis from the primary tu-
mor, then primary tumor lineages would be expected to produce
a single monophyletic clade of metastatic lineages with the primary
tumor and normal tissue as outgroups (i.e., all metastatic lineages
would share a common ancestor that is more recent than their most
recent common ancestor with the primary tumor; e.g., Fig. 1B). In
contrast, if production of metastatic lineages is rare but in-
dependent of causative genetic and epigenetic alterations (i.e.,
stochastic production of metastatic lineages from all extant line-
ages), then primary lineages would not be an outgroup to all
metastatic lineages in all patients. The stochastic expectation for the
primary lineage being the outgroup in a patient with n tumor
samples is equal to the number of possible phylogenetic trees with
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Fig. 1. Tumor samples and methodology. (A) Cancer type and number of
metastases analyzed for 40 subjects in our study. (B) Maximum likelihood tree
of normal tissue (blue circle, 416), primary tumor of the cervix (red circle, P),
and metastatic tumors (black circles, M2, M3, and M4) from subject 416, with a
horizontal scale proportional to the number of mutations, and with all known
driver mutations mapped to branches. The red internode represents the
lineage ancestral to the primary tumor and all metastases. The orange in-
ternode represents the lineage ancestral to all metastases but not to the pri-
mary tumor. Genes in red have more than one mutation occurring on multiple
branches; mutation locations are indicated in parentheses. Numbers at each
internode indicate the statistical support for the corresponding branch (1
means 100% support). (C) Inferred cancer chronogram for subject 416, scaled
in years, encompassing the first genetic divergence from Normal sequence
(29.4 y), the first genetic divergence of metastases (17 y, blue dashes), and the
diagnosis time (8 mo, red dashes). The phylogeny for subject 416 exhibited a
diversity of cancer driver mutations occurring across multiple branches.
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Fig. 2. Four maximum likelihood cancer molecular evolutionary trees, with a
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a colon primary tumor and metastases to the duodenum (M1) and liver (M2).
The primary tumor was an ingroup to all metastases in 80.4% of the Bayesian
posterior of trees for subject 424. (B) Subject 446 had a pancreatic adenocar-
cinoma primary tumor and metastases to the kidney (M2), bowel (M3), and
liver (M4). The primary tumor was an outgroup to all metastases in 99.8% of
the Bayesian posterior of trees for subject 446. (C) Subject 435 had a poorly
differentiated lung adenocarcinoma primary tumor and metastases to the lung
(M0), liver (M1), pancreas (M3), hilar lymph node (M4), paraprostatic soft tissue
(M5), perirenal soft tissue (M6), and mediastinum (M7). The primary tumor was
an outgroup to all metastases in 100% of the Bayesian posterior of trees for
subject 435. (D) Subject 459 had a lung adenocarcinoma primary tumor and
metastases to the lung (M1), liver (M2), spleen (M3), kidney (M4), adrenal (M5)
and paratracheal lymph node (M6). The primary tumor was an outgroup to all
metastases in 100% of the Bayesian posterior of trees for subject 459.
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the primary tumor constrained to be an outgroup, (2n − 5)!!, di-
vided by the number of possible phylogenetic trees, (2n−3)!!, which
simplifies to 1/(2n − 3).
Of the 24 cancer phylogenies that featured a clinically unam-

biguous primary tumor and two or more metastases, 16 featured a
well-supported topological position of the primary tumor also
consistent with patterns of loss of heterozygosity (Fig. S2). Of
these 16, we found that 6 (38%) exhibited a most likely topology
in which metastatic tumor lineages were not monophyletic and
the primary tumor was not the outgroup to all metastases (e.g.,
Fig. 2A) [Bayesian posterior probability (BPP) of the primary
tumor as the outgroup ranged from 13–30%, median 21%]
(Dataset S7). Monophyly and paraphyly of metastases were not
correlated with any particular tumor type. This remarkable fre-
quency of metastatic tumor paraphyly rejects a general model
stating that a rare, heritable, and lineage-specific event is nec-
essary to induce metastasis. Instead, it favors a model where a
metastatic event can occur stochastically from a heterogeneous
primary tumor. Our phylogenies clearly demonstrate a branched
evolution model of tumorigenesis and metastasis, as advocated
by Burrell et al. (14). Furthermore, they demonstrate that not
only do metastatic lineages evolve in parallel with the lineage
sequenced from the primary tumor (3), but also they originate
from divergent lineages within primary tumors.
In contrast, 10 phylogenies exhibited a topology in which the

unambiguous primary tumor was the outgroup to all metastatic
tumors (BPP 67–100%; median 100%; e.g., Fig. 2 B–D and
Dataset S7). This proportion [62.5%; 95% credible interval (CI)
35–85%] is significantly higher than the 19% random expecta-
tion for this 16-subject subset (Dataset S7). To incorporate the
cancer phylogenies of the 8 additional subjects whose inferred
topology with regard to the primary tumor was indicative but
moderately to highly uncertain, we integrated over uncertainty of
all trees using the Bayesian posterior distributions for all 24
subjects with clinically unambiguous primary tumors. The result
was consistent with our previous analysis, yielding a posterior
average of 14.3 out of 24 subjects (60%; CI 46–75%), with their
primary tumor as the outgroup (Dataset S7).
We then included an additional eight cancer phylogenies with

two or three metastases for which the clinical identification of
the resected tumors as primary was deemed to be of moderate
confidence, yielding a consistent 55% (CI 44–69%) of phyloge-
nies with the primary tumor as the outgroup (Dataset S7). The
results are significantly higher than the random expectation
(21% for the 32 subjects). This higher value demonstrates that
heritable genetic, epigenetic, or other lineage-specific events can
contribute a proclivity within lineages toward metastasis of the
primary tumor. However, this result also demonstrates that this
lineage-specific effect is not so strong as to universally lead to
monophyletic metastases (Dataset S7; P < 10−11 that at least one
of the subjects had a primary tumor that was an ingroup to metas-
tases). Thus, either heritable genetic or epigenetic events at best
induce a proclivity toward increased metastasis, or they typically
occur early in the evolution of the primary tumor and thus are reg-
ularly present in all or nearly all primary tissue long before detection.
The simple linear model specified—that all metastatic tumors

are descended from a single original primary cell, such that all
metastases are more closely related to each other than they are
to any tissue in the primary tumor—requires no explicit model-
ing of the processes of tumorigenesis and metastasis to imply a
specific phylogenetic pattern of metastases and primary tumors.
There are many additional questions about the process of me-
tastasis that cannot be addressed without more complex models
of the processes underlying tumorigenesis and metastasis and
comprehensive intratumor sampling (15). Nevertheless, our phylo-
genetic analysis demonstrates that (i) paraphyly happens, violating
the simplest of linear null hypotheses about how primary and
metastatic tumors are related (the hypotheses that all metastases
are more closely related to each other than they are to any tissue in
the primary tumor) and that (ii) paraphyly happens less than would
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of diagnosis (red dashes) during tumor progression. (A) Subject 459 (lung
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vergence of metastases and for the time of diagnosis. The x axis is scaled
from 0 (the first genetic divergence of primary tumor tissue from normal
tissue) to 1 (death). In our set of 40 lethal cancers, the first genetic diver-
gences of metastatic lineages (blue triangles) are distributed so as to often
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be expected completely by chance, indicating that there is a pro-
clivity within some lineages toward metastasis.

Inference of Cancer Chronograms Revealed the Early Genetic Divergence
of Primary andMetastatic Tumor Lineages.Examination of the inferred
molecular evolutionary trees illustrates that metastatic lineages can
diverge genetically from the primary tumor early in the cancer his-
tory. In the cancer molecular evolutionary trees for 11 out of 40
subjects (Fig. S2), the shared ancestral lineage of all tumors was
shorter than the subsequent branch lengths leading to a metastatic
tissue sampled at autopsy. To examine this pattern of early metas-
tasis further, we analyzed the implications of the inferred tree to-
pology combined with constraints from the timing of clinical sample
acquisition. For this purpose, we transformed the molecular evolu-
tionary trees into chronograms (Fig. 1C), applying a molecular clock
calibrated with the timings of diagnosis, biopsy, surgical resection,
and autopsy, and parameterized by cell division times of primary
tumor cells (Datasets S5 and S6). For all subjects, wemapped the time
of the first genetic divergence of tumor lineages to a 0–1 timescale,
where 0 represented the time of genetic origin of tumorigenesis from
normal tissue, and 1 represented death of the patient. In the cancer
chronograms of 7 subjects, the most recent common ancestor of the
primary tumor and metastases occurred in the first half of both
the chronological timescale and the tree with branches scaled to
mutations (e.g., Fig. 3 A vs. B–D). Thus, the divergence of meta-
static lineages from the primary tumor can occur closer to the first
genetic divergence of the tumor from normal tissue, than to death.
The distribution of the times of the earliest divergences of the

metastatic and primary tumor lineages is not uniform (Fig. 3E;
P < 0.001). The mean time of the most recent common ancestors
of all metastatic and primary tumor lineages was 0.72 on our 0–1
timescale whereas the mean cancer diagnosis time was 0.90, late in
the unique genetic history of the cancer (Fig. 3E; P < 0.001).
Saliently, in 35 of our subjects (87.5%), genetic divergence of the
first metastatic lineage had already occurred by the time of di-
agnosis of the primary tumor.
In six cases (15%) in which no metastatic tumors were clini-

cally identified at diagnosis of the primary tumor, we found that
metastases had in four cases already genetically diverged. In
another five subjects (12.5%), genetic divergence of the first
metastatic lineage occurred after diagnosis. In three of these five,
however, metastases were diagnosed together with the primary
tumor at clinical presentation. Thus, either the metastases sampled
were not those present at diagnosis or the true genetic divergences
of metastases in these subjects were earlier than inferred by our
methods. Timing of divergence of the metastatic and primary
tumor lineages was uncorrelated with tumor type. Based on these
results, lineages that proceed to metastasis can genetically dif-
ferentiate from the primary tumor lineage early in the evolu-
tionary and temporal history of cancer, and genetic divergence of
metastases often predates diagnosis even when they are not ev-
ident at diagnosis. When metastases genetically diverge early,
there is less time for the accumulation of any mutations con-
ferring the ability to metastasize subsequent to tumorigenesis.
Therefore, early genetic divergence of metastases favors a par-
allel model (16) in which frequently disseminated cancer cells
rarely establish themselves, rather than a linear model (13) of
cancer evolution requiring somatic mutations to produce me-
tastases. The observed early genetic divergence of metastases has
implications for the retrospective examination of medical care,
including whether surgery is seeding distant metastases (17). For
example, claims that metastases necessarily arose subsequent to
a delay in diagnosis and resection could be refuted.
Our results indicate that metastases from primary tumors can be

produced early and stochastically. They suggest that clinical
treatments addressing genetically heterogeneous metastases
could be warranted even when the sole diagnosis is of a primary
tumor (18). In subjects with early or stochastic metastases, the
likelihood that crucial metastasis-inducing mutations will be iden-
tified as suitable targets for pharmacological intervention is low.
Nevertheless, if present, mutations conveying an increased chance

of metastasis would be expected to occur before the divergence of
any metastatic tumor lineages from the primary tumor. Thus, their
identification by examination of the shared ancestry of metastatic
lineages separate from the evolution of the sampled primary
tumor lineage would be of particular importance (19).

Ancestral State Reconstruction Revealed the Temporal Occurrence
of Mutations in Driver Genes Along Tumor Progression. To identify
mutations that are divergent from the primary tumor lineage but
shared by evolved metastatic lineages, we applied molecular evo-
lutionary models to estimate ancestral sequences in the phylogeny,
inferred the gene sequence at every branch point, and mapped
all mutations to internodes. Internodes diverging from a primary
tumor lineage that constitute a shared ancestral lineage of all
metastatic lineages might be particularly likely to be associated
with mutations that facilitate metastasis (Fig. 1B). We evaluated
such mutations with MutSigCV (5) and found genes exhibiting
an abnormal burden of mutations.
The early mutations disposing a cell lineage toward cancer are

often thought to play key functional roles because they are
shared by all tumors (primary and metastatic) and are far more
likely to be drivers of tumorigenesis that are key to the origin and
persistence of cancer than those that are acquired subsequently.
Therefore, we examined whether any genes exhibited an abnormal
burden of nonsilent mutations mapping specifically to the origin of
the primary tumor (Fig. 1B). MutSigCV identified the well-
known tumor suppressor TP53 and the oncogene KRAS (false
discovery rate of ≤0.1) as genes repeatedly mutated early in the
evolution of these diverse tumors. Their frequent presence in the
root of cancer lineages implies that they play key formative roles in
the origin of cancer and that they deserve redoubled attention for
their roles in tumorigenesis. The potential to therapeutically
target these longstanding drivers of cancer continues to evolve,
including targeting TP53 via the TP53/MDM2 interaction (20),
targeting KRAS via KRAS G12C (21), targeting post-
translational modifications of KRAS (22), or targeting upstream
or downstream effectors (23).
To investigate whether mutations of a larger set of known

cancer driver genes (6, 19; Dataset S8) tend to occur early in
cancer evolution, we compared the occurrence of somatic mu-
tations in driver versus nondriver genes on the early branch
shared by all primary and metastatic tumors (Fig. 1B) with their
occurrence in subsequent branches. Across all subjects, we found
that nonsilent tumor type-specific driver mutations (Datasets S9
and S10) are enriched in the early branch (35 early drivers, 13
late drivers, 2,080 early nondrivers, 3,056 late nondrivers; P =
0.0001, Fisher’s exact test) after removing hypermutated subject
430 (24). Statistical significance held even when retaining subject
430 (P = 0.001; Dataset S11) or when tallying all mutations in
cancer drivers (P = 0.001; Dataset S11).
Furthermore, in the early branch, the ratio of nonsilent versus

silent mutations (dN/dS) was significantly higher in tumor type-
specific drivers than in nondrivers (41 dN driver, 1 dS driver;
4,418 dN nondriver, 1,908 dS nondriver; P = 0.0001). This sig-
nificance still held when we tallied mutations in all cancer genes
from Dataset S8 for all subjects (P = 0.0027; Dataset S12).
However, dN/dS was not significantly higher in tumor-specific
drivers in the late branches than in nondrivers (P = 0.11; Dataset
S12). The significance of results for both early and late branches
remained unchanged after removing hypermutated tumors from
subject 430 from the analysis (Dataset S12).
Perhaps a high somatic selection intensity for these driver

mutations within clonal cancer lineages means that they either
are critical initiating events or are likely to outreplicate other
mutations within a small clonal neoplasm. Accordingly, previous
assessments of the important genes in cancer (6, 19; Dataset S8)
correlate with our findings of their timing early in tumorigenesis.
For example, six cancer driver gene mutations known to play key
roles in cancer (KRAS, TP53, PIK3CA encoding a phosphoino-
sitide 3-kinase, KMT2C and KMT2D encoding histone methy-
transferases, and ALK encoding a receptor tyrosine kinase)
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occurred in multiple cancer patients across tumor types. Based
on the inferred locations of these mutations in the cancer
chronograms—and consistent with our early driver finding—
KRAS and TP53, involved in cancer-related pathways such as
MAPK signaling and telomere maintenance, are likely to be key
early mutations in tumorigenesis. Mutations in KMT2D and
PIK3CA frequently occurred midway along the cancer history (P <
0.001), and ALK and KMT2C frequently occurred late (P < 0.001)
in the evolution of cancer (Fig. 4). Note that TP53 would be
expected to more frequently receive its first mutation than a gene
with a smaller mutational target like KRAS, which is oncogenic
only with mutations at codon sites 12, 13, 18, 61, and 117, because
the mutational target size of genes is highly relevant to when they
are likely to receive their first disabling mutation. The temporal
interdispersion of mutations of a tumor suppressor with high
mutational target size (TP53) within oncogenes with low muta-
tional target sizes (KRAS, PIK3CA, KMT2D, ALK, and KMT2C)
implies that the temporal order inferred is partially driven by
positive selection and possibly epistatic interactions rather than
solely being driven by the waiting time to the first driver mutation.

Conclusion
We have demonstrated that genetic lineages of metastases can
arise early in primary tumors, sometimes long before primary
tumor diagnosis. This result directs research efforts away from
prevention of metastasis-facilitating mutations and toward a
better understanding of fundamental drivers of tumorigenesis.
Second, we demonstrate conclusively that, in contrast with the
longstanding model of linear progression of cancer, metastases
can originate from divergent lineages within primary tumors.
This result argues that, although evolved genetic changes in
cancer lineages seem to affect the proclivity of tumor cells to
metastasize, it is unlikely that there are single genetic changes
that are necessary or sufficient for metastasis. Lastly, we dem-
onstrate the temporal order of occurrence of relevant driver
mutations, indicating their relative roles in tumorigenesis. Al-
though many studies have identified therapeutically targetable
alterations associated with late-stage tumors (25), evolutionary
analyses of the timing of mutations in driver genes in cancerous
tissues will be important not only because pharmaceutical treatment
could have a large therapeutic effect on tumors exhibiting these
early-appearing mutations, but also because any such therapeutic
effect is likely to be exerted across otherwise heterogeneous primary

and metastatic tumor lineages. These alleles represent targets for
pharmaceutical intervention that exist in nearly all subsequent
lineages, and their targeting would provide the greatest potential for
long-term success of therapy.

Materials and Methods
Ethics Statement and Specimen Sampling. The tissues assessed in this study
were obtained from the Yale Pathology Archives based on Yale Human
Investigation Committee at Yale University, Protocol no. 0304025173 to
D.L.R., which allows retrieval of tissue from archives that was consented or
has been approved for use with waiver of consent. Formalin-fixed paraf-
fin-embedded (FFPE) primary tumor tissues, metastases, and normal tissues
were obtained from 40 subjects (Dataset S1). Clinical characteristics, tumor
type, numbers of metastatic samples, and locations are summarized in Fig. 1.

DNA Extraction, Exome Sequencing, Variant Calling, and Variant Validation.
Genomic DNA was extracted from FFPE core biopsies using the BiOstic
FFPE Tissue DNA isolation kit (MO BIO) following standard procedures that
we have used successfully in the past to recover single nucleotide variants (26).
Genomic DNA underwent targeted exome capture using the NimbleGen Seq-
Cap EZ Human Exome Library v2.0 (Roche), followed by sequencing on the
Illumina HiSeq platform to generate 74-base paired end reads, as in Choi et al.
(27). To determine variant sites, sequences from all tumor tissues were aligned
to the human reference genome (hg19) using Eland (Illumina), and single nu-
cleotide variants were called using SAMtools (28). Tumor purity was estimated
using the mean of minor allele frequencies of SNPs within regions of loss of
heterozygosity (LOH). Somatic mutations were identified by comparing read
counts from tumor samples (primary and/or metastasis) with those from cor-
responding normal tissues, as described in Choi et al. (27).

To accurately characterize the nucleotide state at the variant sites across
tumor tissues within a patient, somatic mutations were further analyzed to
account for tumor impurity, loss of heterozygosity, and other factors that
confound variant calling (Fig. S4). To eliminate false positive calls present in
common SNP databases, variants were removed if they were present in the
National Heart, Lung, and Blood Institute Exome Sequencing Project (release
ESP6500SI-V2), 1000 Genomes (release no. 84, March 2012), or the Yale
Human Exome Database. To validate somatic mutations identified (Dataset
S4), we performed direct Sanger sequencing of known cancer genes after
targeted PCR (Dataset S3) for patients depicted in Figs. 1 and 4.

Phylogenetic Analyses and Ancestral State Reconstruction. Somatic variant
sites across each group of corresponding tumor and normal samples were
concatenated into multiple sequence alignments and analyzed by phylo-
genetic and evolutionary methods (Dataset S4). Trees that maximized
parsimony were conclusively identified with an exhaustive tree bisection–
reconnection search by PAUP 4.0 (9). Maximum likelihood trees were es-
timated using GARLI v2.0 (10), which applies a modified genetic algorithm
to infer the best topology, branch lengths, and substitution model pa-
rameters simultaneously, accessed by the convergence of log Likelihood
(lnL) scores in two runs. Bayesian inference of tree topology was per-
formed using MrBayes (11).

To better understand tumor progression, we inferred sequences for the
ancestor of all tumors and all other ancestral/internal nodes in the phylogeny.
Ancestral state reconstruction was performed using the package baseml from
PAML 4.7 (29), implemented with the tree topology from the maximum like-
lihood tree based on the alignment using the K80 model. The inferred ancestral
state for each internal node was compared with the sequence state of the
adjacent node to infer mutations that occurred on each branch of the phy-
logeny (Fig. 1B). All of the mutated genes were then mapped on each branch
of the phylogeny for each of the 40 subjects for further temporal analyses.

Inference of Cancer Chronograms. Because mutations in self-renewing tissues
are cumulative over time and directly correlated with age (30), we used a
molecular clock phylogenetic approach to infer the order of genetic diver-
gence of tumors, calibrating it with the timings of diagnosis, biopsy, and/or
surgical resection of the primary tumor. We inferred chronograms for all
cancer phylogenies (Fig. S3), under a relaxed uncorrelated-clock model
specifying uniform branching priors using mcmctree implemented in PAML 4.7
(29), which accommodates rate heterogeneity, including increases in the rate
of mutations (31) among tumor tissues over time and across the phylogeny.
We specified a gamma prior distribution for the rate of somatic cell substitu-
tions at 8.4 × 10−8 site−1·y−1 (32), scaled to the observed potential doubling
time (Tpot) and SD for each specific tumor (12).
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Fig. 4. Inferred distributions of the temporal occurrence of mutations (Δ) in
cancer driver genes KRAS (dark purple line, no shading), TP53 (black line, gray
shading), PIK3CA (olive line, olive shading), KMT2D (medium purple line, no
shading), ALK (light gray line, light gray shading), and KMT2C (light purple line,
no shading) across diverse cancer types. Probability densities for the appearance
of alleles with nonsilent mutations across these cases indicate that mutations
of KRAS and TP53 tend to occur earlier than mutations of PIK3CA or
KMT2D (P < 0.001), which, in turn, tend to occur earlier than mutations of ALK
or KMT2C (P < 0.001). Mutations are depicted at the midpoint of the interval
during which the gene was inferred to be mutated in the particular subject.
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Temporal Inference of Genetic Divergence of Tumors and Diagnosis Time. To
know the distribution of the times of the first genetic divergences of tumor
lineages, we mapped them to the 0–1 timescale inferred for each chrono-
gram, where zero represented the genetic origin of tumorigenesis from
normal tissue and one represented death of the patient (Fig. 1C). For each
subject, we then drew 1,000 values from the posterior distribution for the
genetic origin of tumorigenesis from the normal tissue, and 1,000 values
from the posterior distribution for the time of first diagnosis. We calculated
the mean as a central estimate for each of these distributions for each
subject and also calculated the maximum likelihood beta distribution for
each of these sets of 40 time points using Mathematica 9. For comparison,
we plotted the beta distributions superimposed on our relative timescale
(Fig. 3). To evaluate whether inferred beta distributions were statistically
significantly different from uniform, the inferred maximum likelihood model
was compared with the maximum likelihood model of a uniform beta distri-
bution (α = 1, β = 1) via a likelihood ratio test evaluated against the χ2 dis-
tribution with two degrees of freedom. To establish the significance of
difference between distributions of tumor ancestor times and diagnosis times,
we compared the maximum likelihood null model of a single beta distribution
for all inferred times to the maximum likelihood of two distinct beta distri-
butions for tumor ancestor times and diagnosis times via a nested likelihood
ratio test evaluated against the χ2 distribution with two degrees of freedom.

Temporal Inference of Gene Occurrence Along Tumor Progression. We per-
formed a Fisher’s exact test to check whether tumor driver genes were oc-
curring significantly early during tumor progression. To detect the temporal
order of mutated alleles, we assembled the time intervals when genes were
inferred to be mutated across all subjects on a 0–1 timescale (Fig. 1C). Each
mutation was associated with a branch in the cancer phylogeny by our an-
cestral state inference. We integrated over uncertainty in the timing of oc-
currence of the mutation by sampling uniformly from the associated branch
on 1,000 of our 0–1-scaled chronograms in our Bayesian posterior and
averaging the resulting sample set. Using Mathematica 9, we fitted these
averages (Fig. 4) to the maximum likelihood beta distribution for when the
mutations commonly arise on the 0–1 timescale.
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